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Abstract

Nonlinear effects of standing wave motions in fixed and vertically excited tanks are numerically investigated. The
present fully nonlinear model simulates two-dimensional waves in stable and unstable regions of the free-surface flow.
Numerical solutions of the governing nonlinear potential flow equations are obtained using a finite-difference time-
stepping scheme on adaptively mapped grids. A o-transformation in the vertical direction that stretches directly
between the free surface and bed boundary is applied to map the moving free-surface physical domain onto a fixed
computational domain. A horizontal linear mapping is also applied, so that the resulting computational domain is
rectangular, and consists of unit square cells.

Predictions of small-amplitude free-surface motions in fixed and vertically excited tanks compare well with second
order small perturbation theory. For stable steep waves in the vertically excited tank, the free surface exhibits nonlinear
behaviour. Parametric resonance is evident in the instability zones, as the amplitudes grow infinitely large, even for
small forcing amplitudes. For steep initial amplitudes the predictions differ considerably from the small perturbation
theory solution, demonstrating the importance of nonlinear effects.

The present numerical model provides a simple way of simulating steep nonbreaking waves. It is computationally
quick and accurate. The o-transformation removes the need for free-surface smoothing for the cases considered herein.
© 2003 Published by Elsevier Ltd.

1. Introduction

Free-surface motions of liquid under gravity in tanks are of practical importance, particularly in marine applications.
Examples include liquid sloshing in ship tanks which may cause the ship to undergo large rolling motions, and free-
surface-induced forces on the walls of storage containers on offshore platforms. In civil engineering, tuned liquid
dampers are used to suppress wind-induced vibrations of tall buildings (Kareem et al., 1999), and to limit resonant
damage of liquid storage tanks in seismic zones. Further applications in the aerospace industry are described by
Abramson (1966). In order to predict the maximum forces due to the liquid responses to excitation, it is essential to be
able to model steep waves properly during sloshing cycles, particularly as nonlinear effects become significant as the
wave amplitude increases.

Considerable previous theoretical and experimental research studies have been carried out into liquid sloshing in
fixed and moving tanks. Faltinsen (1978), Faltinsen and Timokha (2002) and Frandsen (2003) present approximate
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theoretical forms for inviscid sloshing motion in fixed and moving tanks. Recently, Wu et al. (2001) derived an
analytical solution for viscous sloshing in rectangular tanks. The foregoing low-order analytical solutions are very
useful for gaining understanding of small amplitude motions in tanks, and for validating numerical models. However,
physical experiments and numerical modelling are necessary for steep free-surface motions because neither linear nor
second-order theory is applicable when high-order effects are significant. Using a laboratory vertically oscillating tank
facility, Bredmose et al. (2003) have measured highly nonlinear ‘““flat-topped” free-surface profiles caused by
harmonically forced vertical accelerations (representing heave excitations). With a view to ship applications where
heave motions are less significant, Faltinsen and Timokha (2002) describe sloshing motion experiments in tanks forced
to rotate and move in the horizontal direction.

To date most numerical models treat the moving free-surface boundary in one of two ways: either by using
Lagrangian tracking of free-surface nodes with regridding, or by mappings. The former has the disadvantage that the
surface velocities are difficult to predict correctly, and so free-surface smoothing is required. Although mappings
inherently overcome this problem, they are less flexible to apply to irregular geometries or to cases where submerged
bodies are present in the flow domain. Many numerical studies have been undertaken into sloshing in fixed and moving
tanks. For example, Telste (1985) modelled the time-dependent behaviour of the free surface of an inviscid liquid in a 2-
D tank by means of a finite difference model. Chen et al. (1996) used a finite difference model to examine large sloshing
motions in 2-D tanks excited by the horizontal component of four seismic events. For nonoverturning waves, Chen
et al.’s model demonstrated that nonlinear effects during certain earthquakes could be sufficiently large to damage
tanks. Chern et al. (1999) and Turnbull et al. (2003) simulated 2-D free and forced inviscid sloshing using linearly
stretched o-transformed mappings in pseudospectral and finite element schemes. Ferrant and Le Touze (2001) applied
an inviscid pseudo-spectral model to predict 3-D sloshing motions. Wu et al. (1998) also studied the behaviour of
nonbreaking standing waves in 3-D tanks. Using inviscid fluid finite elements, Wu et al. focused on near resonance cases
in tanks excited by both sway and surge motions. Furthermore, Ushijima (1998) used an arbitrary Lagrangian—Eulerian
method on boundary-fitted grids to analyse viscous sloshing and swirling effects in a 3D cylindrical tank.

The present paper describes a 2-D fully nonlinear numerical model of liquid sloshing motions in fixed and vertically
excited rectangular tanks. It is assumed that the liquid is inviscid, incompressible and irrotational, that the free surface does
not become vertical or overturn, and that surface tension can be neglected. A modified o-transformation that stretches the
grid from the bed to the free surface is combined with a horizontal linear mapping, so that the resulting fixed computational
domain is rectangular with cell increments of unit dimensions (thus simplifying the discretized equations). The governing
equations and boundary conditions expressed in terms of the velocity potential are mapped accordingly, and discretized
using second-order finite differences. The o-transformation has two major advantages. Remeshing due to the moving free
surface is not required; and the free surface velocity components are not explicitly needed as part of the computation
process. Extrapolations are unnecessary, and so free-surface smoothing by means of a spatial filter is not required. The
motivation behind this is that equivalent solutions on 2-D grid with o-transformation are known to be extremely stable
(Chern et al., 1999; Turnbull et al., 2003), unlike other schemes which have to use free surface smoothing.

The numerical model is validated by simulating standing waves of different fundamental wavelengths in fixed rigid
rectangular tank. Increasing wave steepness is considered in order to demonstrate the effects of high-order
nonlinearities on the wave forms, unobtainable with first- and second-order analytical solutions. In such cases, the fully
nonlinear model is required. Then, numerical investigations are undertaken into sloshing effects in vertically excited
tanks. Standing waves generated in vertically oscillating tanks through sub-harmonic resonance were first studied
experimentally by Faraday (1831). Benjamin and Ursell (1954) investigated Faraday waves theoretically. Their analyses
were based on an inviscid flow model with surface tension, and they found that small amplitude wave motion is
governed by the Mathieu equation. Benjamin and Ursell concluded that the linearized solutions are always unstable for
an external forcing frequency equal to twice the sloshing frequency. A comprehensive review has been given by Miles
and Henderson (1990). The present model investigates the consequences of eliminating the nonlinear terms.

The results presented herein have been computed on a SUN Ultra 60 workstation with 450MHz CPU (SPEC{p95:
32.7). In no case did the CPU time required exceed 2 h or the RAM required exceed 12 MB.

2. Governing equations

In the following idealized fluid model, we assume the fluid to be incompressible, irrotational and inviscid, and
therefore governed by Laplace’s equation
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Fig. 1. The physical domain (a) mapped onto the computational domain (b).

where ¢ is the velocity potential function and x and z are horizontal and vertical distances in a Cartesian coordinate
system, as shown in Fig. 1.

We assume a flat bed and that waves are generated in a tank with solid walls. The fluid velocity components normal
to fixed boundaries are equal to zero by definition. Hence, we have

@0, x=0p, @

ox

¢

5 =0 z=0. 3)
The dynamic free-surface boundary condition is
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where g is the acceleration due to gravity and ( is the free-surface elevation measured vertically above still water level.
The kinematic free-surface boundary condition is
o o oL

%0 oxox )

3. Modified o-transformed formulation

The o-transformation was first used by Phillips (1957) for weather prediction. Later it was used by Mellor and
Blumberg (1985) for ocean modelling, and it has since been widely applied to shallow water flows (see e.g. Kocygit et al.,
2002) and to simulate waves in relatively deep water (see e.g. Turnbull et al., 2003). In the present paper, a modified o-
transformation is used to map the liquid domain onto a rectangle, such that the moving free surface in the physical
plane becomes a fixed horizontal line in the computational mapped domain. Fig. 1 illustrates the effect of the mapping,
which has been designed so that each computational cell in the transformed domain is of unit size. The mapping
implicitly deals with the free surface motion, and avoids the need to calculate the free surface velocity components
explicitly. Extrapolations are unnecessary, and so free-surface smoothing by means of a spatial filter is not required for
the results presented here. It should be noted that the mapping is linear between the bed and free surface, which is
unique by definition, and so the model is limited to nonvertical free-surface profiles, thus excluding overturning waves.

With reference to Fig. 1, the mappings from the physical (x, z, ) domain to the transformed (X, o, f) domain are given
by

xeoX, X=m+ (rm;;m])x’
_ he
ze>o, o0=n + —(n2 nlz(z + 5),
teT, T=t, 6)

where m,, my, n; and n, refer to nodal indices of the corner points of the grid in the mapped domain.
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Fig. 3. Free-surface elevation at the left wall (n = 1) for At* = 0.011. Grid: — —, 40 x 20; —, 40 x 80.

The derivatives of the potential function ¢(x,z, ) are transformed with respect to x, z and ¢ into derivatives of

&(X,0,T). The first derivatives of the velocity potential, ¢, are obtained as
op  (my — ml)(acb N ocad))
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where o = —(0 — n1)0(/6X and y = —(¢6 — n1)0(/0T.
Similarly, Laplace’s equation (1) can be rewritten as
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In the following, we rewrite the boundary conditions (2)—(5) using the o-transformation.

The fixed vertical wall boundary condition (2) on X = m; and m, is

oP o 0P

X hoo

where h = { + hy; and the still water depth is ;.
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Fig. 4. Free-surface elevation at the left wall and tank centre (n = 2) for w, = 5.54rad/s. (a) ¢ = 0.016 (Grid: 40 x 20). (b) ¢ = 0.38
(Grid: 40 x 80). ——, Numerical prediction at left wall; —, numerical prediction at tank centre; — —, second-order solution at left wall;

— —, second-order solution at tank centre.

The flat bed boundary condition (3) on ¢ = n; becomes

(nz—nl)a_é_o 6(15_

o0 e (10)

The dynamic free-surface boundary condition (4) on ¢ = n; becomes
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and the kinematic free-surface boundary condition (5) on ¢ = n; becomes
ol (m—ny)oP 1_‘_(’"2*7711)2 s ? (m—m)’ & od (12)
oT h Oo b oxX b oXoX

Egs. (8)—(12) are spatially discretized using second-order finite differences and solved in the transformed domain
iteratively using successive over-relaxation. Furthermore, the unsteady free-surface boundary equations are temporally
discretized using the second-order Adams—Bashforth scheme.
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Fig. 5. Free-surface profiles for n = 2. (a) ¢ = 0.016 (Grid: 40 x 20). (b) ¢ = 0.38 (Grid: 40 x 80).

4. Sloshing motions in 2-D fixed tanks

Inviscid free sloshing in a fixed rectangular tank is chosen as a benchmark validation test.

Numerical predictions of the free surface motions are compared with analytical results from second-order potential
theory. Second-order solutions of liquid motions in a 2-D rectangular tank can be obtained by representing the velocity
potential as an expansion based on the eigensolutions of free sloshing motions:

?=2 C°iffhf£ xyn cos(ln)Tu(1) (13)
where k, = nn/b is the wavenumber for n = 0, 1,2... . The ordinary differential equations for the functions 7}, describe
the time evolution of the individual components. These functions are obtained after substituting Eq. (13) into
homogeneous first-order or nonhomogeneous second-order free-surface conditions. Solutions of the form (13) satisfy
both the Laplace equation and the no-flow boundary condition on the tank walls. The second-order free-surface
elevation for the nth sloshing mode along the length of the tank may then be expressed:

1ot + g%k2 (l 3ot —g?k2 3 ot - gk?

8 i 8 o 2024w — w%n)) cos(2n)
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Fig. 6. Free-surface elevation at the left wall and tank centre for ws = 7.9 rad/s and a grid size of 40 x 80. (a) ¢ = 0.016. (b) ¢ = 0.031.
——, Numerical prediction at left wall; —, numerical prediction at tank centre; — —, second-order solution at left wall and tank centre.

where w, = \/gk, tanh(k,h;) and wy, = /¢2k, tanh(2k,h). The initial conditions which satisfy the velocity potential

and free-surface equations are chosen as

{(x,n)|;—og = A cos(k,x) (15)
and

P(x,2)l=0 = 0, (16)

where A is the amplitude of the initial wave profile, and x is the horizontal distance from the left wall.

Nonlinear free-surface motions are investigated by varying the wave steepness, defined herein as ¢ = Aw? /g, where
gravity is g = 9.81 m/s2 until near breaking conditions are encountered. We note that ¢ is a measure of nonlinearity.
The results presented are for a tank of aspect ratio i,/b = 0.5, where b denotes the length of the tank. The linearly
stretched grid in the physical domain in accordance with the o-transformed equation (6) is shown in Fig. 1.

The time histories of the free sloshing motions are presented in nondimensional form using the sloshing frequency w,,,
so that the nondimensional time * = w,, and the nondimensional time step Ar* = w, Az. The first numerical tests
carried out are designed to check the sensitivity of the numerical scheme to the time step and the grid resolution.

Figs. 2 and 3 show wave profiles along the tank at two different times, and time histories of the free-surface elevation
for the first sloshing mode (n = 1). Results for different grid resolutions are shown related to moderate and steep wave
amplitudes (¢ = 0.173,0.288) for time steps of Ar* = 0.011 and 0.006. Increasing the grid points in the vertical direction
was found to be more effective in improving accuracy than increasing the grid points in the horizontal direction. It was
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Fig. 7. Free-surface elevation at the left wall and tank centre for ws = 7.9 rad/s and a grid size of 40 x 80. (a) ¢ = 0.19. (b) ¢ = 0.38.
——, Numerical prediction at left wall; —, numerical prediction at tank centre; — —, second-order solution at left wall and tank centre.

found that a grid size of 40 x 80 and a time step of 0.003 s provided sufficient accuracy to capture nonlinearities related
to steep wave predictions (¢ > 0.2).

Fig. 4 illustrates for n = 2 the time-dependent free-surface motion at the left wall and at the centre of the tank for (a)
very small amplitude sloshing where ¢ =0.016, and (b) large amplitude sloshing where &= 0.38. Although a
nondimensional time step of 0.017 was used in both cases, the grid size was increased in the vertical direction for the
larger amplitude test case. A grid size of 40 x 40 and a nondimensional time step of 0.017 were sufficient to model
accurately waves of small to moderate amplitude (approximately £¢<0.09), in comparison with the second-order
analytical solution (14). For large amplitude sloshing it can be observed (Fig. 4b) that a phase-shift grows in time
between the approximate analytical solution and the fully nonlinear numerical model prediction. Also the maximum
amplitudes are higher and the troughs becomes less deep than those of the approximate solution. This has also been
observed by Tadjbakhsh and Keller (1960), Vanden-Broeck and Schwartz (1981), Tsai and Jeng (1994) and Greaves
et al. (1997). The corresponding numerical wave profiles across the tank at different times during a typical sloshing
period are shown in Fig. 5. The small amplitude waves display linear standing waves whereas the steep wave case
exhibits a dispersion effect that is most evident at the nodes at x /4, = 0.5 and 1.5. Identical behaviour has been reported
by other investigators, e.g., Chern et al. (1999).

Further studies were undertaken, halving the wavelength (n = 4). To maintain accuracy it was necessary to increase
the mesh to 80 grid points in the vertical direction for the small amplitude wave cases. The non-dimensional time step
was kept the same as for the single standing waves without violating the Courant condition. However, a further
parameter test revealed that a factor of four decrease in the time step (At* = w4 At = 0.0063) did not have a significant
effect for the single standing wave cases. Figs. 6 and 7 show the time histories of the free-surface elevation for increasing
wave steepnesses (¢€[0.016,0.38]) at the centre of the tank and at the wall. For the double standing wave case, the
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ave steepnesses greater than 0.031 (Fig. 6b). Otherwise the

phase-shift due to nonlinearity becomes evident for small w.

same nonlinear patterns, but amplified, as for the single standing wave can be observed. In contrast to the single

standing waves, the double standing wave free

surface elevations at the lateral walls and centre of the tank are in phase.

However, the steepest wave case (¢ = 0.38) simulated by the fully nonlinear numerical model gives higher maximum

peaks at the walls than the centre (Fig. 7b). Wave profiles for n = 4 are shown in Fig. 8 for a small wave steepness of
& =0.016 and for maximum steepness of ¢ = 0.38 (just before the wave overturns/breaks). The large amplitude waves
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Fig. 11. Wave profiles in stable region for w;/wrF = 0.9 and k = 0.017. ¢ = 0.288, grid size of 40 x 80.

exhibit dispersion effects at the nodes, x/h; = 0.25,0.75,1.25 and 1.75, in a similar fashion to that observed for single
standing waves. This finding is also evident in the results of Chern et al. (1999). Fig. 9 shows the physical mesh of the
free sloshing motion for the maximum nonoverturning double standing waves (¢ = 0.38) when the free surface has a
maximum (peak) and minimum (trough) at the tank centre.

5. Sloshing motions in a 2-D vertically excited tank

The second set of tests is concerned with forced sloshing of liquid in a rectangular tank subjected to vertical base
excitation, as might occur in an idealized earthquake. In the following, the free surface motions are examined for
increasing wave steepness, inside and outside regions of parametric resonance (instability regions). It should be noted
that Faraday waves occurring in a vertically base-excited tank are a classical example of a parametrically excited
system. A general property of such a system is instability of the equilibrium state when the forcing frequency is twice the
natural frequency of the system (Ibrahim et al., 2001). This instability is often referred to as parametric resonance. As
far as the equilibrium state is the solution, no motion can be generated by this excitation other than when certain initial
pertubations of the equilibrium state exist. If there is an unstable mode amongst the perturbations it will grow
exponentially. This distinguishes parametric resonance from classical resonance due to forced motion of an oscillating
system. Classical resonance occurs when the forcing frequency equals the natural frequency of the system, resulting in
the amplitude of the solution growing linearly.
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We consider a 2-D tank excited by a vertical force at the base. The coordinate system is fixed at left wall of the tank,
and moves with the tank. The dynamical free-surface boundary condition can be re-written as follows:
¢

1 d*Zp

where Zr is the forced vertical displacement of the tank. Using the o-transformation at ¢ = ny, Eq. (17) becomes

0P (my—ny) &L 00 ) 1{(ma —my)? (8D (ny — ny) 80 0D\* (m2 — m)? (0P

aT = h aras Yo erecosori oy T axas) T @ \ao) |0 1Y
where the tank is assumed periodically excited with the following vertical base acceleration:

&’z

Tf = —w}acos(wpl) (19)

and where a is the forcing amplitude, ¢ is the time and wp is the angular frequency of forced motion. The initial
conditions are similar to the sloshing motion simulation in a fixed tank

{(x, m)| =g = A cos(knx) (20)
and

d(x, 2|0 = 0. @n
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Fig. 13. Phase-plane plot in stable region at the left wall for w; /wr = 0.9, and k=0.017. (a) ¢ = 0.0014 (Grid: 40 x 40). (b) ¢ = 0.288
(Grid: 40 x 80).

Standing waves in vertically excited tanks, as originally explored in Faraday’s experiment, have been the subject of
much attention (e.g. the review paper by Miles and Henderson (1990) and the recent work by Jiang et al. (1996), Jiang
et al. (1998)). The linear solution for the motion of fluids in a vertically excited tank was first obtained by Benjamin and
Ursell (1954). The second-order analytical solution for the free-surface elevation for the vertical base-excited tank
satisfying the initial conditions for the n,, sloshing mode may be expressed:

cos(k,x) 1 , ) -
— g | (————(1 2k, x)T —_—
¢ {1 “esin(wpr) | OF ’)“(2(1 —sin(p.ny) O COSCkRN T (@r ) + 72 o
212 212 4 !
gk g-k 2 G'(wFt) cos(Lk,x)F'(wpt)
1 +>— 1 —>— 2k,x)| T . - , 22
% { + w? + < w? ) cos( x)} (@rt)"+ 2(1 — ksin(wpt))  2(1 — k sin(wgt)) (22)
where the functions 7, G and F satisfy the following ordinary differential equations:
() + —S%C) 0y 4 021 — e sin(r) T(o) = o, (23)
1 — x sin(t) "
" kcos(t) 5 (I2g? ” kQ(w* + g2k2) cos(t) )
_— =-—Q (-2 T()T"(z) - —2=2 4 T 24
GO+ 1 — k sin(t) G "\ o} +3)TOT) 203 (1 — Kk sin(r)) @ 24
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with initial conditions:
TO)=G0)=F@0)=0, T'0)=G0)=F0)=1

and

k, = %’ w, = gkn tanh(knhs),

2 2
Wy, oy, awy Aw;,
Q= , oy = , K=— §&=—.

OF a g )

Note that the parameter x is a measure of the importance of forcing motion and ¢ is a measure of nonlinearity.
Benjamin and Ursell (1954) also investigated the stability of this motion. They showed, that the solutions for the free-
surface elevation can be expressed using Mathieu functions, f(¢), which satisfy the equation

T 0~ 290520 = 0. (26)

The equation exhibits stable or unstable behaviour depending on the values of the parameters, p and g¢.



210 J.B. Frandsen, A.G.L. Borthwick | Journal of Fluids and Structures 18 (2003) 197-214

15
10}
| /\
<
g 0 fAAA A I\VI'\V/\VA A /\ {\ f\ A
g vvvvvv
5}
_lo L
By 50 00 ] 150 200 250
t
@ x =0.173.
1000 } E
i
s .
g ¥
~ Al
0 7 T
V v HH
-
\'::
!
505 50 00 ] 150 200 250
t
(o) x = 0.691.

Fig. 15. Free-surface elevation in unstable region at the left wall for w;/wr = 0.5, and ¢ = 0.0014, and a grid size of 40 x 40. (a)
k= 0.173. (b) k = 0.691. —, Numerical prediction; — —, second-order solution.

Eq. (23) for a function T'(r) can be reduced to Eq. (26) if we take T'(t) = f'(t/2 — n/4) and express the parameters as
Kk =2¢/p and Qi = p/4. The corresponding stability map of Eq. (23) is represented in Fig. 10.

Further it should be noted that it is possible to obtain a first-order stable solution and a second-order unstable
solution simultaneously. This occurs when the parameters (€2, x) lie in stable regions and the parameters (£2,,, k) are in
unstable regions. Note that the equation for the function F(7) has the same differential operator as Eq. (23), and it
produces an unstable solution that grows exponentially in time. The whole asymptotic expansion in this case becomes
quickly nonuniformly invalid and the present form of the asymptotic solution can no longer be applied.

The test cases considered herein are marked on the stability map in Fig. 10. The first tests are carried out in a stable
zone, with frequency ratio Q,—; = 0.9, and a small nondimensional forcing amplitude, x = 0.017. Fig. 11 illustrates the
wave profiles across the tank at different times during a typical sloshing period for ¢ = 0.288. This is a steep wave case
and significant influence of nonlinearity is evident in the asymmetric wave profiles and from the dispersion effects at the
tank centre. The associated time history for the free-surface elevation is shown in Fig. 12b. As the solution evolves in
time, a discrepancy in phase-shift between the numerical model and the approximate solution is evident; the fully
nonlinear model predicts waves of slightly longer period than the approximate solution. Differences in amplitudes, of
both peaks and troughs, can also be observed. The behaviour of the free surface motion in the vertical excited tank is
similar to the standing waves observed in the fixed tank for this very small value of x. Furthermore, it should be noted
that for small nonlinearities (¢ = 0.0014), a grid size of 40 x 40 resulted in sufficient accuracy in comparison with the
second-order approximation (Fig. 12a). However, the steeper wave case (¢ = 0.288) required a finer grid resolution of
40 x 80. It was again found to be more effective to ensure accuracy by increasing the mesh density in the vertical
direction than by higher resolution horizontally. We define the nondimensionalized time ¢* = wrt, and the
nondimensional time step Ar* = wp At. Herein, a nondimensional time step of 0.012 was used for the test case in
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Fig. 16. Phase-plane plot in unstable region at the left wall for w; /wr = 0.5, and ¢ = 0.0014, and a grid size of 40 x 40. (a) k = 0.173.
(b) k = 0.691.

the stable region for both the small and steep wave cases. Fig. 13 presents the corresponding phase-plane plots for the
small and steep wave cases. The small amplitude wave phase-plane plot (a) displays linear behaviour of the free surface
that is exactly repeatable through the periodic closed orbit whereas the nonrepeatable nonclosed orbits of the large
amplitude sloshing in (b) show that the free surface exhibits complicated behaviour typical of nonlinear systems.

Figs. 14 and 15 show the free-surface elevation time histories in the instability region for Q,_; = 0.5. The forcing
amplitude is varied from x = 0.058 to 0.691 while the wave steepness parameter remains at a constant low value of
¢ =0.0014. It can be seen that the free-surface elevation exhibits parametric resonance as expected in the region of
instability. From * = 0 to approximately 100, i.e. during the no growth phase, the wave amplitudes predicted by the
fully nonlinear model are found to be in close agreement with the second-order solution (26). When the amplitudes
begin to grow at r* > 100, discrepancies in amplitudes between the numerical model and the approximate analytical
solution increase, as would be expected due to the enhanced nonlinearity of the free surface motions as ¢* increases
above 100. However, there is almost exact in-phase behaviour at all times. Fig. 16 shows phase-plane plots related to the
free-surface time histories in Fig. 15. It can be observed that the free-surface exhibits standard linear behaviour for an
unstable system.

Fig. 17 shows the free-surface time histories in the instability region for three values of ¢ while keeping the forcing
amplitude small and constant (x = 0.057). For small initial sloshing amplitudes, ¢ = 0.0014 and 0.014, almost identical
agreement for t* = 0—200 is obtained between the fully nonlinear model and the second-order solution (Fig. 17a).
After * = 200, some deviations in amplitude begin to occur, as anticipated. Nonlinear behaviour of the free-surface
occurs when ¢ is increased to 0.144 (Fig. 17b). Excellent agreement with the approximate form is achieved for ¢*
from 0 to 100. Hereafter, deviations in amplitude and phase become evident. The associated wave profiles for
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Fig. 17. Free-surface elevation in unstable region at the left wall for w;/wr = 0.5 and x = 0.057, and a grid size of 40 x 80. (a)
e =0.0014, 0.014. (b) ¢ = 0.144. —, Numerical prediction; — —, second-order solution.
Q,_; = 0.5 in the instability region are shown in Fig. 18 for small amplitude waves (a) and for large amplitude waves

(b). The steep wave case reveals that asymmetric profiles and dispersion effects are evident at the tank centre, due to
nonlinear effects.

The results presented herein are limited to a single liquid depth (for reasons of brevity). However, it is very important
to note that the liquid depth has a profound influence on nonlinear free-surface effects. It has been established that there
is a critical liquid depth that delineates two nonlinear regimes of the liquid free surface referred to as soft and hard
spring characteristics. Gu and Sethna (1987), Gu et al. (1988) and Virnig et al. (1988) have examined the role of the
liquid critical depth in rectangular tanks subjected to vertical sinusoidal excitation. Another important feature is that
there is an excitation frequency range over which the free surface exhibits chaotic motion (Ibrahim et al., 2001). It is
therefore intended in future to carry out a more exhaustive investigation of the complex free-surface behaviour under
parametric excitation using the present model.

6. Conclusions

A fully nonlinear inviscid numerical wave tank has been developed based on potential flow theory with the mapped
governing equations solved using a second-order finite difference scheme. Standing waves have been simulated in fixed
and vertically moving 2-D rectangular tanks. Excellent agreement has been obtained between second-order potential
theory solutions and the numerical model predictions for small amplitude wave cases. For steep sloshing, the numerical
model captures the high-order nonlinear behaviour of the free-surface motions.
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Fig. 18. Wave profiles in unstable region for w; /wr = 0.5 and x = 0.057, and a grid size of 40 x 80. (a) ¢ = 0.0014,0.014. (b) ¢ = 0.144.

Sloshing effects in vertically excited tanks outside the unstable region display similar behaviour to free
sloshing motions in a fixed tank when the forcing parameter, r, is small. This confirms the periodic behaviour
of the small amplitude solution. As & increases, the fluid behaviour is no longer perfectly periodic, and
irregular amplitudes occur, even for small amplitude waves. Nonlinear effects complicate the fluid behaviour
further, making it almost unpredictable. However, in stable regions, the solution remains bounded at all times. Vertical
motions produce drastic effects within the instability regions, where parametric resonance takes place. In these
regions, tiny excitations can cause the growth of small initial perturbations, if the forcing acts on the tank for a
sufficiently long time.

The present numerical model is simple, computationally cheap and accurate. For the cases considered in this paper,
the g-transformation removes the need for free-surface smoothing. The model provides a straightforward approach to
simulating steep nonbreaking waves that may be readily extended to the prediction of 3-D wave motion.
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